

アプリケーションガイド

データセンターの ラックスペースの最適化 電力要件の削減 資本コストの軽減

はじめに	. 3
MP0-8 光ファイバーとは	. 3
MP0-8 と MP0-12 の光ファイバーの用途の違い	. 3
MPO-8 で使用されるトランシーバテクノロジー	. 5
MPO-8 が合理的な理由はポート分岐による電力の節約	. 5
パラレルリンクおよびデュプレックスリンクの経路	. 7
ファイバーインフラストラクチャのフォームファクタオプション	. 7
MP0-8 のアプリケーション	. 8
デュプレックスアプリケーション	. 8
パラレルアプリケーション	10
MP0-8 (Base-8 MP0)トランクケーブルアセンブリ	14
部品番号構成	14
MP0-8 (Base-8 MP0) インターコネクトケーブルアセンブリ	15
部品番号構成	15
MP0-8 (Base-8 MP0) ブレイクアウトハーネスケーブルアセンブリ.	16
部品番号構成	16

はじめに

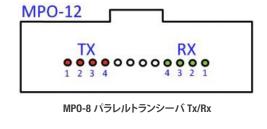
パンドウイットの MPO-8 (Base-8 MPO) ファイバーケーブリ ングは、コストとリソースを節約したいというお客様のニーズを 念頭において作られました。その革新的なデザインは、資本コ ストを軽減するだけでなく、貴重なラックスペースを解放して使 えるようにし、電力需要を削減するのに役立っています。効率 性を求める最新のアプリケーションに合わせて、各ケーブルに は8芯の光ファイバーがあり、4レーンが送信専用、4レーン が受信専用に分割されています。活発な企業経営、ダイナミッ クなコロケーションデータセンター、シンプルな機器キャビネッ トの管理など、当社の汎用性の高い MPO-8 光ファイバーケー ブリングシステムは、お客様をあらゆる面でサポートします。

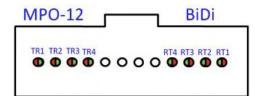
MPO-8 光ファイバーとは

MPO-8 光ファイバートランクケーブルは、ジャケットあたり 8 芯の光ファイバーで構成されており、通常はリボ ン型で、MPO または複数のデュプレックス LC コネクタで成端できます。MPO-8 光ファイバーは、8 芯の光 ファイバーレーンが必要なアプリケーションで導入が進んでおり、4 レーンが送信 (Tx) 専用、4 レーンが受信 (Rx) 専用となっています。MPO-8 のアプリケーションの例に 100GBASE-SR4 があり、これは 4 つの独立し た 25G レーンを使用して 100G の帯域幅を実現します。このレーン数が 8 つの光ファイバーは、40GbE や 100GbE のほか、400GbE や 800GbE のパラレル光方式のデータ送信方法にも適合します。

当社の MPO-8 製品には、50 µ m OM4、OM4+ (Signature Core[™])、マルチモード用 OM5、シングルモー ド用 9μm OS2 があります。 ファイバートランクジャケットの色は MPO-12 光ファイバー用途のものと合致しま すが、MPO-8 トランクまたはインターコネクトのコネクタブーツはグレーで、12 芯ケーブルとすばやく見分けら れるようになっています。

MPO-8 と MPO-12 の光ファイバーの用途の違い


MPO-12 構造のケーブルは過去 30 年以上の間、光ファイバーのバックボーン設備で広く設置されていた規格で したが、用途が変わるにつれ、接続方式のニーズも変化してきました。40GbE 規格の発表により、MPO-8 の 用途として最も相応しいのは、4x10G への分岐であるということがすぐに明らかになりました。8 芯への分岐の 用途に対するニーズは、100G x (4) 25G、400G x (4) 100G、および 800G の並列接続の出現とともに続きま した。


MPO-8 光ファイバーケーブリングシステム

MPO-8 と MPO-12 の物理的な大きな違いは、トランクあるい はアプリケーションにおける光ファイバーの数です。MPO-8 は 8 芯の光ファイバーで構成されている一方、MPO-12 は 12 芯の光 ファイバーがルースチューブまたはリボン状に構成されています。 12 芯トランクを使用する一部のアプリケーションでは、MPO-12 光ファイバーのうち 4 芯は「ダーク」、 つまりアプリケーションに 合わせて未使用の状態で、このため分岐の接続では変換ハーネ スまたは変換力セットを使用することが必要な場合もありました。 MPO-12 光ファイバーは MPO-8 のアプリケーションに対応で きますが、光ファイバーのうち 4本 (つまり 33%) が使用されず 「ダーク」のままになるためあまり理想的ではないと考えられてい ます。

MPO-8 のアプリケーションに移行するもう 1 つの理由として、ス イッチプロバイダのポート数 (16、32、48 ポートのスイッチなど) とぴったり一致していることがあります。 MPO-12 の方が、ジャケッ トトランクあたりで提供される光ファイバーが多いですが、アプリ ケーションの速度が 40GB に到達すると、あまりきれいに分岐し ません。 どちらのテクノロジー (MPO-8 と MPO12) も MPO-2 (MPO/LC の分岐) の接続には適していますが、ポートレプリケー ション用途で密度を最大化するためには、12 の倍数が入った外 被覆ありの光ファイバーに比べて、MPO-8 の方が最終的にはス イッチテクノロジーとより良く適合します。 MPO-12 のソリューショ ンはすべて 8 で割り切れるわけではないため、MPO-8 ケーブル の方がハーネスやカセットによる変換が不要なため光ファイバー の使用率が高まり、減衰値が低下します。MPO-8 と MPO-12 の物理的な違いに加えて、トランシーバレベルでのデータ送信の 違いもあります。右の図に示すように、並列接続では Tx/Rx が MPO コネクタの両側に物理的に分離されていますが、双方向デュ プレックスの用途では、Tx/Rx が連続ポートに存在します。

注意: Panduit PanMPO™ 12 芯トランク を使用すると、MPO-8 のアプリケーション は 12 芯のうち 8 つを使用して実現され、 MPO はピンなしからピンありに変化し、 極性はメソッド B (キーアップからキーアッ プ) に変化します。

MPO-12 BiDi トランシーバ Tx/RX

	MPO-8 と MPO-12 アセンブリの比較 成端ごとの MPO コネクタの数									
ファイバー芯数 MPO-12 MPO-8										
8 または 12	1	1								
24	2	3								
48	4	6								
72	6	9								
96	8	12								
144	12	18								

表 1: MPO-8 と MPO-12 のアセンブリごとのコネクタ数

注意: MPO-8 のアセンブリでは、MPO-12 の同数のアセンブリと比べて MPO コ ネクタの数が (24 芯以上で) 50% 増加しま

MPO-8 で使用されるトランシーバテクノロジー

ほとんどすべてのマルチファイバー (2 芯より多い) QSFP または OSFP プラグ接続可能な光トランシーバは、 MPO-8 に対応しています。 中には MPO-16 のものもありますが、 一般的に、2 芯デュプレックスアプリケーショ ンではないほとんどのアプリケーションで MPO-8 が使用されています。

		-8 パラレル光方式) または MPO/LC 分岐)			
トランシーバモデル	メディアタイプ	伝送速度	距離	コネクタタイプ		
QSFP-40G-SR4		150m				
QSFP-4x10G-LR	MMF	40G	10km			
QSFP-100G-SR4			100m			
QSFP-100G-PSM4	SMF	100G	500m			
QSFP-100G-SL4	MMF		30m			
QDD-400G-SR4-BD	IVIIVIF	4000	100m			
QDD-400G-DR4	SMF	400G	500m	MPO		
QDD-8X100G-FR	SIVIE	800G	2km			
QDD-400G-SR4.2	MMF		100m			
QDD-4x100G-FR			2km			
QDD-4x100G-LR	CME	400G	10km			
OSFP-400G-DR4	SMF		500m			
OSFP-400G-XDR4			2km			

注意: これは網羅的 な一覧ではありませ ん。これらは8芯 MPO - 4xLC アセン ブリや 8 芯 x 4 LC トランクまたはイン ターコネクトでも接続 できます。

表 2: パラレル光方式の用途の例

MPO-8 が合理的な理由はポート分岐による電力の節約

100 %の光ファイバー利用率、スイッチポートのマッピング、400/100GbE のスイッチ間アプリケーションに よる分岐、または 400/100GbE、100/25GbE、40/10GbE のサーバー分岐のアプリケーションに加えて、 MPO-8 ケーブリングはデータセンター内の全体のコストおよび電力を大幅に引き下げ、必要な変換メディアを 減らすことができます。

ここで、100GbE サーバーに対して 400GbE スイッチを使うアプリケーションの例を見てみましょう。この例では、 キャビネットあたり 32 台のサーバーを搭載した 16 台のキャビネットからなる POD が存在し、サーバーあたり 1 つの 100GbE ダウンリンクがあります。 従来の Top of Rack (ToR) ネットワークでは、キャビネット内のパッ チ用にキャビネットあたり 1 つの 100GbE スイッチが必要です。これを 4:1 (MPO-8) のファイバー分岐を使う MoR 400GbE スイッチモデルに切り替えると、必要なスイッチの数が減少し (資本コストの節約)、さらに電力 使用量が減少します (運用コストの節約)。

これらの節約量は、ポート数または密度が増大すると増えていきます。シャーシベースのスイッチまたは高 radix スイッチの導入などを行うと、合計運用コストおよびポートあたりの電力使用量をすぐに減少させることができま す。

現在のアーキテクチャ

- キャビネットあたり 1 つの 100G Nexus 9364C-GX ToR スイッチ (2 RU)
- サーバーあたり1つのポート
- 32 台のサーバーに接続可能
- 32 ポートのダウンリンク、16 ポートのアップリンク、 2:1 オーバーサブスクリプション

| TOR |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 32 SERVERS |

新しいアーキテクチャ

- 2 台の ToR Nexus 9364D-GX2A スイッチ (2 RU) 8 キャビネット
- 4 to 1 (SR4.2) の分岐を使用して 1 つのポートで 4 台のサーバーに対応
- 256 台のサーバーに接続を提供
- 32 ポートのダウンリンク、16 ポートのアップリンク、2:1 オーバーサブスクリプション

							TOR TOR	TOR TOR							
32 SERV	32 SERVI	32 SERV	32 SERV	32 SERVI											
ERS	ERS	ERS	ERS	ERS	ERS	ERS	ERS	ERS	ERS	ERS	ERS	ERS	ERS	ERS	ERS

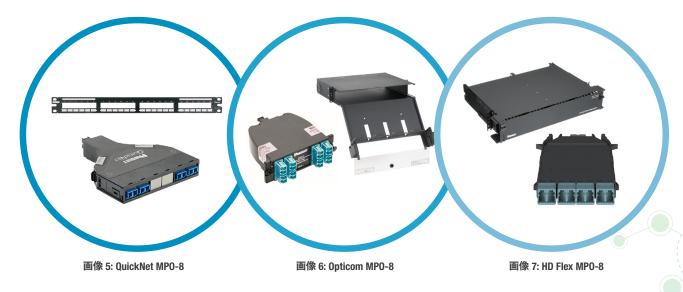
(16 台の) 100G ToR から (4 台の) 400G ToR スイッチへのスイッチ削減による節電:

- 一般的な 2 RU 100G スイッチ (例: Nexus 9364C-GX) 811W x 16 = 13kW
- 一般的な 2 RU 400G スイッチ (例: Nexus 9364D-GX2A) 1324W x 4 = 5.3kW
- 16 台のキャビネット POD でのスイッチ削減により 7.7kW の節電 (全体で 60 %)

MPO-8 スイッチポート分岐を使用した節電 (スイッチダウンリンクレビューのみ):

- ダウンリンクトランシーバでの POD の合計節電量
 - 一般的な 100G トランシーバは約 4.3W、400G の場合は約 12W
 - 100G ToR の使用 = 4.3W * (合計 1024 台の) トランシーバ (POD 内) = 4.4kW
 - 400G MoR (100G の分岐) を使用した場合: (4:1 = 512 * 100G + 128 * 400G)
 - 12W 400G * (128 台の) トランシーバ = 1.54kW
 - 4.3W 100G * (512 台の) トランシーバ = 2.2kW
 - 100G と 400G のトランシーバによる合計電力 = 3.74kW
 - 100G ToR と 400G 4:1 の分岐モデルを比較したときのトランシーバの合計節電量: 660W、 つまりこの POD のトランシーバであと 15 %の節電

全体の節電量:


• スイッチでの節電量 7.7kW + トランシーバでの節電量 660W = POD の節電量 8.36kW

パラレルリンクおよびデュプレックスリンクの経路

MPO-8 光ファイバーはパラレルリンクに使用されます。つまり、FOCIS-5 MPO (マルチファイバープッシュオン) ベースのコネクタを使用して、送信と受信の両方に対して複数のファイバーおよびチャネルを使用するアプリケーションを意味します。MPO-8 は、MPO-2 デュプレックスリンクへの変換も可能です。これは、その 8 芯の光ファイバーを 2 芯の Tx/Rx 送信用に分割できるためです。MPO-8 の光ファイバーでは、Tx1 (ポジション 1) は Rx12 で受信する必要があります。反対に、トラフィックが Tx12 に入る場合、Rx1 で受信する必要があります。この Tx/Rx のシナリオは、タイプ B または「メソッド B」の極性リンクコンポーネントを使用して実現されます。また、その極性または光路を維持するには、チャネル内のコンポーネントの数を奇数に保つ必要があります。

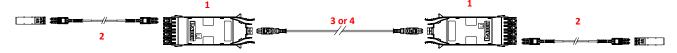
ファイバーインフラストラクチャのフォームファクタオプション

お客様の特定のニーズに合わせて複数のフォームファクタおよび密度のオプションを提供する、さまざまな MPO-8 光ファイバー接続のコンポーネントが利用できます。SFQ QuickNet[™]、Opticom[™]、および HD Flex[™] コンポーネントのフォームファクタを選ぶことができ、さまざまな要件や好みに対応した設計になっています。以下に示すオプションをご覧ください。

MPO-8 光ファイバーアセンブリは、トランク、インターコネクト、ハーネスが受注仕様生産方式で入手できます。 このオプションにより、お客様の特定の要件に応じてファイバーのタイプ、難燃性グレード、コネクタタイプ、性能、 極性、長さなどをカスタマイズできます。

MPO-8 光ファイバーケーブリングシステム

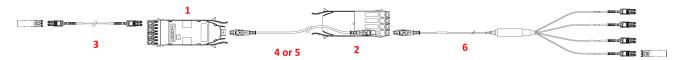
MPO-8 のアプリケーション


すべてのアプリケーションについて、部品を選ぶ際は以下のチャ ネル図をご覧ください。具体的な部品番号については、目的の 用途を確認してください。説明を簡単にするため、HD Flex コ ンポーネントを使用したアプリケーションの例が示されています が、SFQ QuickNet カセット、Opticom、HD Flex コンポー ネントの部品番号も選択できます。

デュプレックスアプリケーション

1. デュプレックスインターコネクト 環境内での移動、追加、変更を簡単に行うために使用します。

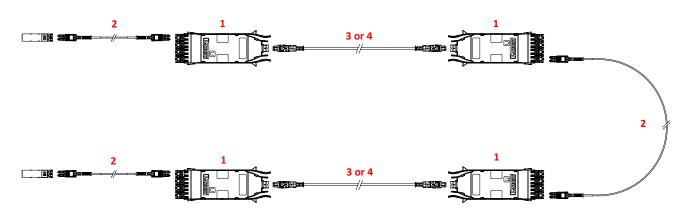
*注意: カセットを使用する Opticom 用途 では、2 つの 8 芯 MPO と 8 つの LC ア ダプターを使用します。MPO-8 を使用し た他のアプリケーションが可能な場合が ありますが、これらが最も一般的な設置 オプションとなります。外被覆の難燃性グ レードはプレナムのものを示しています。 LSZH または Euroclass についてはこち らの Panduit CPQ の Web ページを参 照してください。



	内容		OS2			OM4	
#	デュプレックスインター コネクト	HD Flex	Opticom	SFQ QuickNet	HD Flex	Opticom	SFQ QuickNet
1	4 ポート、8 芯カセット - ユニバーサル極性	FHC39N-08H-10U	FC39N-16-10U	FQ39N-08-10U	FHC3Z0-08H-10U	FC3Z0-16-10U	FQ3Z0-08-10U
2	LC/LC Uniboot パッチコード	F	92RPU1U10NM***		FZ2RPU1U10NM***		
3	8 芯インターコネクト (ピンなし - ピンなし)	F	R98PVVB011M***		FRZ8PJJY011M***		
4	8 芯トランク (ピンなし - ピンなし)	F	Y98PVVB015M***			FYZ8PJJY015M***	

2. 分岐を使用したデュプレックスインターコネクト

ポート数が多いスイッチに対応します。このアプリケーションでは、インターコネクトが適切に定義されると 使用するカセットが少なくなります。

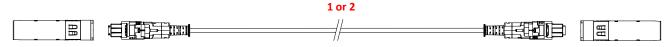


	内容		OS2		OM4			
#	分岐を使用したデュプレックス インターコネクト	HD Flex	Opticom	SFQ QuickNet	HD Flex	Opticom	SFQ QuickNet	
1	4 ポート、8 芯カセット - ユニバーサル極性	FHC39N-08H- 10U2	FC39N-16-10U2	FQ39N-08-10U2	FHC3Z0-08H- 10U2	FC3Z0-16-10U2	FQ3Z0-08-10U2	
2	4 ポート MPO FAP	FHMP-4-ABL	FAPH0412BLMP0	FQMAP45BL	FHMP-4-ABL	FAPH0412CGMP0	FQMAP45BL	
3	LC/LC Uniboot パッチコード		F92RPU1U10NM**	*		FZ2RPU1U10NM***		
4	8 芯インターコネクト (ピンなし - ピンなし)		FR98PVVB011M***	k		FRZ8PJJY011M***		
5	8 芯トランク (ピンなし - ピンなし)		FY98PVVB015M***	k		FYZ8PJJY015M***		
6	8 芯ハーネス U2*		FH98PWPQ016M**	*		FHZ8PKPV016M***		

^{*}ハーネスの千鳥配列も利用可能

3. デュプレックスクロスコネクト

分配エリアでの柔軟なパッチ環境が可能なソリューションです。



内容	<u>\$</u>		OS2		OM4			
#	デュプレックスクロスコネクト	HD Flex	Opticom	SFQ QuickNet	HD Flex	Opticom	SFQ QuickNet	
1	4 ポート、8 芯カセット <i>-</i> ユニバーサル極性	FHC39N-08H- 10U	FC39N-16-10U	FQ39N-08-10U	FHC3Z0-08H- 10U	FC3Z0-16-10U	FQ3Z0-08-10U	
2	LC/LC Uniboot パッチコード		F92RPU1U10NM*	**	FZ2RPU1U10NM***			
3	8 芯インターコネクト (ピンなし - ピンなし)		FR98PVVB011M*	**	FRZ8PJJY011M***			
4	8 芯トランク (ピンなし - ピンなし)		FY98PVVB015M*	**		FYZ8PJJY015M**	*	

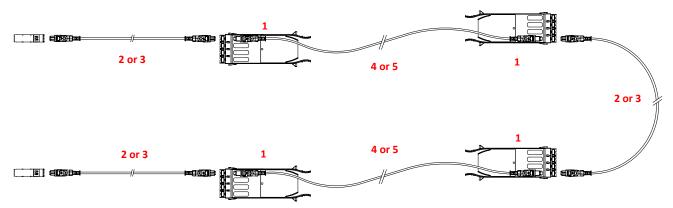
パラレルアプリケーション

4. 直接接続

短距離 (ラック内または列内) のポイントツーポイントの機器接続が行えます。 (直接接続は常にメソッド B です)

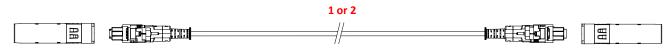
内	\$		OS2		OM4			
#	直接接続	HD Flex	Opticom	SFQ QuickNet	HD Flex Opticom SFQ QuickNet			
1	8 芯インターコネクト (ピンなし - ピンなし)		FR98PJJB001M***		FRZ8PJJY011M***			
2	8 芯トランク (ピンなし - ピンなし)		FY98PJJB005M***			FYZ8PJJY015M***		

5. パラレルインターコネクト


デュプレックスインターコネクトと同じように、高い帯域幅アプリケーションでの移動、追加、変更が簡単に 行えます。

	内容		OS2			OM4		
#	パラレルインターコネクト	HD Flex	Opticom	SFQ QuickNet	HD Flex	Opticom	SFQ QuickNet	
1	4 ポート MPO FAP	FHMP-4-ABL	FAPH0412BLMP0	FQMAP45BL	FHMP-4-ABL	FAPH0412CGMP0	FQMAP45BL	
2	8 芯インターコネクト (ピンなし - ピンなし)		FR98PVVB011M**	*	FRZ8PJJY011M***			
3	8 芯トランク (ピンなし - ピンなし)		FY98PVVB015M**	*		FYZ8PJJY015M***		
4	8 芯インターコネクト (ピンあり - ピンあり)		FY98PWWB015M**	**	FYZ8PKKY015M***			
5	8 芯トランク (ピンあり - ピンあり)		FY98PWWB015M**	**		FYZ8PKKY015M***		

6. パラレルクロスコネクト


パッチ環境の片側での移動、追加、変更が可能で、スイッチでの 1:1 のポートレプリケーションが可能です。

	内容		OS2		OM4			
#	パラレルクロスコネクト	HD Flex Opticom SFQ QuickNet			HD Flex	Opticom	SFQ QuickNet	
1	4 ポート MPO FAP	FHMP-4-ABL	FAPH0412BLMP0	FQMAP45BL	FHMP-4-ABL	FAPH0412BLMP0	FQMAP45BL	
2	8 芯インターコネクト (ピンなし - ピンなし)		FR98PVVB011M***		FRZ8PJJY011M***			
3	8 芯トランク (ピンなし - ピンなし)		FY98PVVB015M***			FYZ8PJJY015M***		
4	8 芯インターコネクト (ピンあり - ピンあり)		FY98PWWB015M***			FYZ8PKKY015M***		
5	8 芯トランク (ピンあり - ピンあり)		FY98PWWB015M***			FYZ8PKKY015M***		

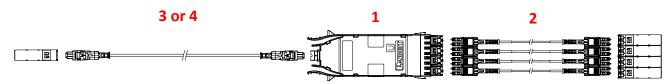
7. ハーネス分岐を使用した直接接続

キャビネット内や列内でのスイッチとサーバーの接続など、近接するサーバーに高帯域幅スイッチを分岐する場合に使用します。

	内容		OS2		OM4				
#	ハーネス分岐を使用した 直接接続	HD Flex	SFQ HD Flex Opticom QuickNet			HD Flex Opticom QuickNet			
1	8 芯 LC ハーネス U2*	FH98PVPQ016M***			FHZ8PJPV016M***				

^{*}ハーネスの千鳥配列も利用可能

8. デュプレックス分岐へのインターコネクト


少ないカセット数で高帯域幅のスイッチポートから 4 つの低帯域幅のリンクに分岐します。

	内容		OS2		OM4					
#	デュプレックス分岐への インターコネクト	HD Flex	Opticom	SFQ QuickNet	HD Flex	Opticom	SFQ QuickNet			
1	4 ポート、8 芯カセット - ユニバーサル極性	FHC39N-08H- 10U2	FC39N-16-10U2	FQ39N-08-10U2	FHC3Z0-08H- 10U2	FC3Z0-16-10U2	FQ3Z0-08-10U2			
2	4 ポート MPO FAP	FHMP-4-ABL	FAPH0412BLMP0	FQMAP45BL	FHMP-4-ABL	FAPH0412CGMP0	FQMAP45BL			
3	LC/LC Uniboot パッチコード		F92RPU1U10NM**	*	FZ2RPU1U10NM***					
4	8 芯インターコネクト (ピンなし - ピンなし)		FR98PVVB011M***	k	FRZ8PJJY011M***					
5	8 芯トランク (ピンなし - ピンなし)		FY98PVVB015M***	k	FYZ8PJJY015M***					
6	8 芯インターコネクト (ピンなし - ピンあり)		FY98PVWB015M**	*	FYZ8PJKY015M***					
7	8 芯トランク (ピンなし - ピンあり)		FY98PVWB015M**	*	FYZ8PJKY015M***					

9. ポート分岐を使用したインターコネクト

1:4 ポートレプリケーションが可能です。ケーブル管理を簡素化するために短い長さのパッチコードを使用す るキャビネット内のパッチ用途として最も良く使用されます。

	内容		OM4						
#	ポート分岐を使用した インターコネクト	HD Flex	Opticom	SFQ QuickNet	HD Flex	Opticom	SFQ QuickNet		
1	4 ポート、8 芯カセット - ユニバーサル極性	FHC39N-08H- 10U	FC39N-16-10U	FQ39N-08-10U	FHC3Z0-08H-10U	FC3Z0-16-10U	FQ3Z0-08-10U		
2	LC/LC Uniboot パッチコード		F92RPU1U10NM**	*	FZ2RPU1U10NM***				
3	8 芯インターコネクト (ピンなし - ピンなし)		FR98PVVB011M**	k	FRZ8PJJY011M***				
4	8 芯トランク (ピンなし - ピンなし)		FY98PVVB015M**	k	FYZ8PJJY015M***				

10. ハーネス分岐を使用したインターコネクト

2 芯から 8 芯のネットワークアプリケーションへの Day 2 アップグレードを簡単に行うことができ、このとき 水平インフラストラクチャを変更することなくハーネスを除去してインターコネクトに交換できます。

	内容		OS2		OM4					
#	ハーネス分岐を使用した インターコネクト	HD Flex	Opticom	SFQ QuickNet	HD Flex	HD Flex Opticom				
1	4 ポート MPO FAP	FHMP-4-ABL	FAPH0412BLMP0	FQMAP45BL	FHMP-4-ABL	FAPH0412CGMP0	FQMAP45BL			
2	8 芯インターコネクト (ピンなし - ピンなし)		FR98PVVB011M***		FRZ8PJJY011M***					
3	8 芯トランク (ピンなし - ピンなし)		FY98PVVB015M***		FYZ8PJJY015M***					
4	8 芯インターコネクト (ピンあり - ピンあり)		FY98PWWB015M**	*	FYZ8PKKY015M***					
5	8 芯トランク (ピンあり - ピンあり)		FY98PWWB015M**	*	FYZ8PKKY015M***					
6	8 芯 LC ハーネス U2*		FH98PVPQ016M***	•	FHZ8PJPV016M***					

*ハーネスの千鳥配列も利用可能

注意: その他の MPO-8 の部品番号については、www.panduit.co.jp を参照してください。

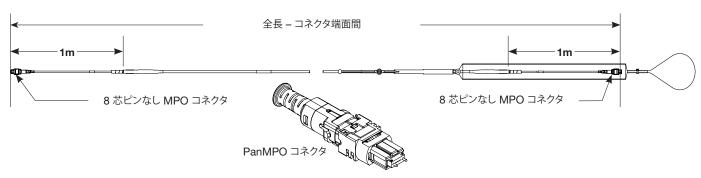
MPO-8 (Base-8 MPO)トランクケーブルアセンブリ

部品番号構成

FYZ8LJJY011M030 = OM4 8 芯 HD Flex、屋内用細径トランク、LSZH、両端が 1 m 分岐の PanMPO-8 ピンなし、極性 B、低損失、プーリングアイ (片端 A)、30 メートル

文字	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
例	F	Υ	Z	8	L	J	J	Y	0	1	1	М	0	3	0

1 – ファイバー	F = ファイバー	8 – 極性/損失	A = メソッド A、標準損失 (SM)
2 – ケーブルタイプ	Y = トランクケーブル (8 ~ 24 芯) T = トランクケーブル (48 ~ 144 芯)		B = メソッド B、標準損失 (SM) X = メソッド A、低損失 (MM) Y = メソッド B、低損失 (MM)
3 - ファイバータイプ	9 = OS2 シングルモード 9/125μm Z = OM4 50/125μm S = OM4+ 50/125μm W = OM5 50/125μm		K = メソッド A、超低損失 (MM) (8 - 48 芯) L = メソッド B、超低損失 (MM) (8 - 48 芯)
4 – ファイバー芯数	8 = 8 芯 C = 16 芯 U = 24 芯	9 - シリアル 10 11	下表を参照
	W = 48 芯 X = 72 芯	12 - 単位	$M = \times - \vdash \vdash \vdash \vdash$
	Y = 96 芯 A = 144 芯	13 – 長さ 14	005 – 999 メートル
5 – 難燃性グレード	L = LSZH	15	
6 – コネクタタイプ 7	G = MPO-8 ピンなし (MM) H = MPO-8 ピンあり (MM)		


シリアル	トランジション	プーリングアイ
011	HD Flex	あり
012	HD Flex	なし
013	HD Flex 〜ピッグテール	あり
014	HD Flex 〜ピッグテール	なし

J = PanMPO-8 ピンなし (MM) K = PanMPO-8 ピンあり (MM) X = MPO-8 ピンなし APC (SM) Y = MPO-8 ピンあり APC (SM) V = PanMPO-8 ピンなし APC (SM) W = PanMPO-8 ピンあり APC (SM)

U = ピッグテール (片端 B のみ)

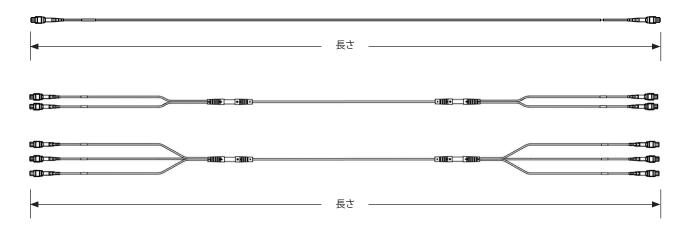
シリアル	トランジション	プーリングアイ
015	標準	あり
016	標準	なし
017	標準~ピッグテール	あり
018	標準~ピッグテール	なし

細径トランクケーブルアセンブリの詳細

MP0-8 (Base-8 MP0) インターコネクトケーブルアセンブリ

部品番号構成

文字


例: FRZ8PJJY011M030 - OM4 8 芯インターコネクト、プレナム、PanMPO-8 ピンなし- PanMPO-8 ピンなし、極性 B、低損失、30 メートル

3 4 5 6 7 8 9 10 11 12 13 14 15

m							-				1			1 –			1			
例	F	R	Z	8	Р	J	J	'	Y	0		1	1		M	0		3)
1 - ファイバー 2 - ケーブルタイフ 3 - ファイバータイ	7	F = ファ R = 丸型 9 = OS2 Z = OM	型屋内 2 シンク 4 50/1	$25 \mu m$	° 9/125	μm		8	- #	亟性/損	失		B X Y K	= メン = メン = メン = メン	/ツド/ツド/ツド	A、B、A、B、A、B、 標低低超超	樂 損 損 損 援 低 抵	員失 (S) 大 (MN) 夫 (MN 員失 (N	SM) //) //) //M)	
4 – ファイバー芯数	坟	W = ON S = OM 8 = 8 芯 C = 16 U = 24	4+ 50 <i> </i> : 芯					10 11	- s - 単	ンリアル 単位	,		下	- ^ ^ 表を参 = メ-	照			K. J. (1)	,,,,	
5 – 難燃性グレー	۴	P = プレ L = LSZ		OFNP)				13 14	- £	長さ			0.	5 – 10)0 メ	ートル	,			
6 - コネクタタイプ 7	P	X = MP Y = MP V = Par W = Pa	PO-8 E IMPO- IMPO- O-8 E O-8 E IMPO- IMPO-	゚ンあり(N 8 ピンな 8 ピンあ シあり A 8 ピンな	MM) し (MM) り (MM) PC (SM PC (SM し APC 5り APC	1) 1) (SM)		15												

シリアル	分岐 – 片端 A	分岐 – 片端 B				
011	なし	なし				
012	60cm (24 インチ)	60cm (24 インチ)				
013	なし					

QuickNet MPO インターコネクト丸型ケーブルアセンブリ詳細図

MP0-8 (Base-8 MP0) ブレイクアウトハーネスケーブルアセンブリ

部品番号構成

例: FHZ8PJPV016M015 = OM4 ハーネス、8 芯、丸型、プレナム、Pan-MPO-8 ピンなし- LC Uniboot プッシュプル (24 インチ (60cm) 同長分岐)、4 to 1 極性 (U2)、低損失 - 15 メートル

文字例

1 F 2 3 H Z

8

5 6 P J 7 P 8 9 V 0

10 11 1 1

12 13 M 0 3

15 5

1 - ファイバー

F = ファイバー

2 - ケーブルタイプ

H = 丸型屋内ハーネス

3 - ファイバータイプ

9 = OS2 シングルモード 9/125 μm

 $Z = OM4 50/125 \mu m$ $W = OM5 50/125 \mu m$ $S = OM4 + 50/125 \mu m$

4 - ファイバー芯数

8 = 8 芯

5 - 難燃性グレード

P=プレナム (OFNP)

L = LSZH

6 - コネクタタイプ

G = MPO-8 ピンなし (MM) H = MPO-8 ピンあり (MM) J = PanMPO-8 ピンなし (MM) K = PanMPO-8 ピンあり (MM) X = MPO-8 ピンなし APC (SM) Y = MPO-8 ピンあり APC (SM) V = PanMPO-8 ピンなし APC (SM) W = PanMPO-8 ピンあり APC (SM)

7 - コネクタタイプ (片端 B)

L = LC デュプレックス (SM & MM) P = LC Uniboot プッシュプル式 (SM &

MM)

B = LC/APC デュプレックス (SM) 9 = LC/APC Uniboot プッシュプル (SM) 8 - 極性/損失

Q = 4 to 1 / U2 - 標準損失 (SM) V = 4 to 1 / U2 - 低損失 (SM & MM) U = 4 to 1 / U2 - 超低損失 (MM)

9 - シリアル 10

10

12 - 単位

M = メートル

13 - 長さ

14 15 001 - 100 メートル

下表を参照

シリアル	ブレイクアウト長	千鳥配列
011		同長分岐
012	18 インチ (45cm)	LCペア1が最長
013		LC ペア 1 が最短
014		LCペア1とペア2が最長
015		ペア1とペア2が最短
016		同長分岐
017	04 /5-7	LC ペア 1 が最長
018	24 インチ (60cm)	LC ペア 1 が最短
019	(000111)	LCペア1とペア2が最長
01A		ペア1とペア2が最短

シリアル	ブレイクアウト長	千鳥配列					
01B	30 インチ (76cm)	同長分岐					
01C		LC ペア 1 が最長					
01D		LC ペア 1 が最短					
01E		LCペア1とペア2が最長					
01F		ペア1とペア2が最短					
01M		同長分岐					
01N	00 /2 -	LC ペア 1 が最長					
01P	39 インチ (1m)	LC ペア 1 が最短					
01Q	(1111)	LCペア1とペア2が最長					
01AR		ペア1とペア2が最短					

PANDUIT[™]

パンドウイットコーポレーション日本支社 〒108-0075 東京都港区港南2-13-31

jpn-toiawase@panduit.com

www.panduit.com/base-8